

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Home

And Now for Something Completely Different!

scd is yet another
implementation of the tools called bumpversions. There are many such
tools available in the wild and I thoroughly looked through them. And
decided to reinvent the wheel. You have a legit question: WHY THE BLOODY
HELL DOES THIS WORLD NEED YET ANOTHER BUMPVERSION? Because I wanted the
tool which works better at slightly bigger scale and I wanted the tool
which I won’t fight against immediately after adoption.

All bumpversion-like tools alllow you to manage versions of your
software within a project. If you have a version number in your config
file, documentation title, somewhere in the code, you know that it is
irritating to update them manually to the new version. So there is whole
set of tools which can manage them with one command.

For example, there is well-known and probably standard de-facto
bumpversion [https://github.com/peritus/bumpversion]. Unfortunately,
bumpversion seems stale and seriously limited in its capabilities
(this is the main reason why scd was born). For example, there are no
regular expressions and replacement patterns look cumbersome (why do
we need that serialize block if we can use templates? Templates
are everywhere!). Also, I wanted to have a possibility to use several
replacement blocks without dancing around INI syntax which never works
on practice (probably I tend to complicate things, but with bigger
project INI starts to irritate a lot).

Please find more rants in Rationale.

Why Something Completely Different?

I usually find myself and my team in situation when we are over
optimistic about future releases. “This time we make things right”. And
everytime, when we release, I feel myself as John Cleese:

 Rationale

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Rationale

scd was created when I worked on project which is slightly better
than simple library. This project has several services (you
may add “micro” prefix if you want) and a lot of plugins. This
project has so many plugins that we even created cookiecutter [https://github.com/audreyr/cookiecutter] template for that. Overall
more than 10 Python packages.

These packages have dependencies and some of these dependencies were
project dependencies. Such as common and some api package depend on
common, you get it. And we have to pin version or put a range like
>=,< or ~= (at that time pip/setuptools even do not understand
~=). Also, we had documentation and we had to manage documentation
via long running stable branches. So we had to support docs for version
1.0 and 2.0. Oh, and we had DEBs/RPMs and later Docker images where we
put versions in labels!

As you understand, version numbers were hardcoded everywhere. In some
places this was the only way to put version number (like in this doc).

We’d been trying to use bumpversion [https://github.com/peritus/bumpversion]. If worked fine for
some files but become a nightmare if we wanted to make complicated
replacement where regular expression will fit best. Also, it was totally
impossible to use bumpversion for files where we have to put ranges like
dep>={major}.{minor},<{major}.{next_minor} (no next_minor, what a
pity). Yes, these files were not understand ~= at that time and
please remember that not all package managers recognize such concept. It
had no regular expressions and several replacements for a file. We could
fork bumpversion but it was as complicated as create our own.

So here is rationale. We wanted bumpversion which:

	Support several search/replacement pairs for a file

	Support searching with regular expressions

	Have a named sets of replacement/search patterns because in a lot of files these could repeat a lot

	Have some default search/replacement pairs.

	Have a more reasonable configuration format than INI.

	Templates.

	Possibility to set current version and understand that numbering in files can vary even if current development version persist.

	Possibility to extract some information from Git to version numbers.

Let’s elaborate on those items

Reasonable Configuration File

scd has to support different configuration formats out of
box. Currently it supports JSON, YAML and TOML. These formats are not
ideal, but at least it is more reasonable to use them, then struggling
with INI limitations.

Also, there should be autodiscovery of such files. Please check
Configuration to get more details.

Regular Expression Search

It was the biggest limit of bumpversion: using a literal string search.
Seriously, I do not want to keep precise literal structure of some
string in file. Developer who modifies the file, can forget about
bumpversion, reindent things or replace some quotes from
single to doubles.

I do not want optional third-party tool to dictate how to keep precise
line in file. This irritates. That’s why I need to have regular
expression search. Seriously, it is that simple. To have flexibility
to not remember about scd or bumpversion at all.
These tools are optional and should never be implicit dependencies.

Several Search/Replacement Pairs

Okay, you have a package X which dependend on Y and Z. X, Y
and Z all are parts of your project. Fine, and you need to bump
version. Now solve problem: how to replace version range of Y and Z
in setup.py of X? In a single replacement literal pattern. Yes,
constant. Just because your version bumper is dumb enough to force you
to simplify its life. Or with giant unsupporable regexp, yes.

We need to have a support of multiple search/replacement pairs per file.
Dixi.

Named sets of Search/Replacement Pairs

If you have a lot of files where to manage version, you will quickly
realise that those files are not individual, you will have ~5-6
different search and replacement patterns overall. To avoid a long list
of copying and pasting, you need to have a possibility to assign pattern
with some name and use it later.

For example, you can have (?<=version\s=\s")\d+\.\d+\.\d+ named as
setuppy. In that case, if you will replace double quotes with single
ones, you won’t sed whole file, you can do it in one place.

Templates

Why the hell on the world do you need to implement confusing
serialize blocks if world already has templates? scd uses
Jinja2 [http://jinja.pocoo.org/] as templating engine.

Git and Development Releases

We live in the world where development releases exist and we need
something to support them. It is great to have some base version for a
current developing release but we need to have a possiblity to generate
development version identifiers. Prerelases. Include build numbers.

In Python there are several projects to do that. For example, there is
widely used pbr [http://docs.openstack.org/developer/pbr/] which
generates development release numbers for you. There is setuptools_scm [https://github.com/pypa/setuptools_scm] which is seriously great and
I highly recommend everyone to use it.

The only problem about setuptools-scm is its extensibility. It is
extendable by entrypoints and it is reasonable. But if you want to
have another version numbering policy, you need to implement your own
entrypoint. And put it somewhere. And set setup_requires to that
package. It works, but it is slightly inconvenient to use that, having
additional depenency you have to put somewhere and install before any
other package. But seriously, this project rocks. And available for
Python packages only so there is no way to update docs or RPM specs. And
it is irritating to have 2 schemes of versioning, they will fail one
day.

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Installation

scd is simple Python package which hosted on Cheese Shop [https://pypi.python.org] so if you are familiar with Python package
installation, it would be really straightforward.

Tool works with Python>=2.7 and PyPy2.

Prerequisites

To install scd, you need to have pip or setuptools installed. Pip is
required if you want to install it from Cheese Shop and setuptools if
you prefer source code installation.

To install Pip [https://pip.pypa.io/en/stable/] follow these guides:

	Installation with package managers [https://packaging.python.org/install_requirements_linux/]

	Installation without package managers [https://pip.pypa.io/en/stable/installing/]

To install setuptools follow official guide [http://setuptools.readthedocs.io/en/latest/setuptools.html#installing-setuptools] and please check repository of your OS: there is a great possiblity that you already have it installed.

Install from Cheese Shop

If you want to install system-wide or in virtualenv then do

pip install scd

Otherwise, please do

pip install --user scd

Also, it is possible to use following extras to add some optional
features to your installation.

	Name
	Description

	yaml
	Enable support of YAML configuration files.

	toml
	Enable support of TOML configuration files.

	simplejson
	Use simplejson for JSON parsing.

	colors
	Enable support of colors in output.

So if you want to install scd with YAML support and colors enabled,
please do following:

pip install scd[yaml,colors]

Install from sources

git clone https://github.com/9seconds/scd
cd scd
python setup.py install

Verify that tool is installed with scd --help.

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Configuration

scd uses configuration file to get information on settings,
search/replacement patterns and files to manage.

As you got from Install from Cheese Shop,
scd can parse TOML [https://github.com/toml-lang/toml], YAML [http://yaml.org/] and JSON [http://www.json.org] configuration
files. So first we need to elaborate a little bit on how to create
required configuration.

Configuration Formats

Yes, 3 formats, but in most cases all three formats are possible to
reduce to equialent JSON. Here are examples of all 3 formats, which are
totally equialent.

YAML:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	version:
 number: 1.2.3
 scheme: semver

search_patterns:
 full: "{{ full }}"

replacement_patterns:
 full: "{{ full }}"

defaults:
 search: full
 replace: full

files:
 setup.py:
 - default

TOML:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	[version]
number = "1.2.3"
scheme = "semver"

[search_patterns]
full = "{{ full }}"

[replacement_patterns]
full = "{{ full }}"

[defaults]
search = "full"
replace = "full"

[files]
"setup.py" = ["default"]

JSON:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	{
 "version": {
 "number": "1.2.3",
 "scheme": "semver"
 },
 "search_patterns": {
 "full": "{{ full }}"
 },
 "replacement_patterns": {
 "full": "{{ full }}"
 },
 "defaults": {
 "search": "full",
 "replace": "full"
 },
 "files": {
 "setup.py": ["default"]
 }
}

I hope you get an idea: all these formats are representing
the same datastructure. If you are familiar with JSON Schema [http://json-schema.org/], you may find that useful:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

	{
 "$schema": "http://json-schema.org/draft-04/schema",
 "type": "object",
 "required": ["version", "defaults", "files"],
 "properties": {
 "config": {
 "type": "number",
 "minimum": 1,
 "multipleOf": 1.0
 },
 "version": {
 "type": "object",
 "required": ["scheme", "number"],
 "properties": {
 "scheme": {
 "type": "string",
 "enum": ["pep440", "semver", "git_pep440", "git_semver"]
 },
 "number": {
 "oneOf": [
 {"type": "number"},
 {"type": "string"}
]
 }
 }
 },
 "files": {
 "type": "object",
 "additionalProperties": {
 "type": "array",
 "items": {
 "oneOf": [
 {"type": "string", "enum": ["default"]},
 {
 "type": "object",
 "properties": {
 "search": {"type": "string"},
 "search_raw": {"type": "string"},
 "replace": {"type": "string"},
 "replace_raw": {"type": "string"}
 },
 "anyOf": [
 {
 "required": ["search"],
 "not": {"required": ["search_raw"]}
 },
 {
 "required": ["search_raw"],
 "not": {"required": ["search"]}
 },
 {
 "required": ["replace"],
 "not": {"required": ["replace_raw"]}
 },
 {
 "required": ["replace_raw"],
 "not": {"required": ["replace"]}
 }
]
 }
]
 }
 }
 },
 "search_patterns": {
 "type": "object",
 "additionalProperties": {"type": "string"}
 },
 "replacement_paterns": {
 "type": "object",
 "additionalProperties": {"type": "string"}
 },
 "groups": {
 "type": "object",
 "additionalProperties": {"type": "string"}
 },
 "defaults": {
 "type": "object",
 "properties": {
 "search": {"type": "string"},
 "replacement": {"type": "string"}
 },
 "additionalProperties": false
 }
 }
}

Please be noticed that it is possible to extend allowed schemes with
external entrypoints but PEP 440 [https://www.python.org/dev/peps/pep-0440] and SemVer [http://semver.org/]
are supported out of box.

Examples

For simplicity, I will put examples here in YAML but as you already
understand, they could be easily made with any other format.

Full Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	config: 1

version:
 number: 1.0.1
 scheme: semver

search_patterns:
 full: "{{ semver }}"
 vfull: "v{{ semver }}"
 major_minor_block: "\\d+\\.\\d+(?=\\s\\#\\sBUMPVERSION)"

replacement_patterns:
 full: "{{ full }}"
 major_minor: "{{ major }}.{{ minor }}"
 major_minor_p: "{{ major }}.{{ minor }}{% if patch %}.{{ patch }}{% endif %}"

defaults:
 search: full
 replace: full

groups:
 code: 'scd/.*?\.py'
 docs: 'docs/.*?'

files:
 setup.py:
 - search_raw: "(?>=version\\s=\\s\\\"){{ full }}"
 docs/conf.py:
 - default
 - search: vfull
 replace: major_minor_p
 - search: major_minor_block
 replace_raw: "{{ next_major }}"

Shortest Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	version:
 number: 1.0.1
 scheme: semver

defaults:
 search: semver
 replace: base

files:
 setup.py:
 - default

So, as you can see, config can be large and can be small. It is up to
you what to choose.

Parameters

From examples above you may get an idea that some parameters are
optionals, some mandatory. Mandatory parameters are version,
defaults and files. All others are optionals.

Also, you may notice Mustache-like strings like {{ something }}.
Your guessing is correct, it is Jinja2 [http://jinja.pocoo.org/]
templates. Template context variables are depended on choosen version
scheme, you can get a list of them in Predefined Template Context.

config

config is a numeric version (integers, please) of the config format.
This is the first field processed by scd therefore it is possible to
have absolutely different schemas in future.

This field is responsible for config schema version. Sometimes (probably
in future) we will bring (definitely will) some non-backward compatible
changes in schema and we will differ configs by numbers.

This field is optional in 1.x versions, it implicitly equal to 1.

version

Version block defines a settings, related to versioning strategy.

scd won’t calculate version for you, you need to set base version
by your own. Some may consider that as inconvenience (if you have
latest version 0.1.0, it is good to have next one as 0.1.1 calculated
automatically), but I belive this is for the greatest good (struggling
to force your smartass versioner to have next version 0.2 is way more
inconvenient, than setting explicit one).

This block has 2 mandatory parameters and 0 optionals.

	Parameter
	Type
	Example
	Description

	number
	string
	1.2.3
	This parameter defines basic version you are developing. Upcoming planned
version.

For example, you’ve just released version 1.3.0. What is the next version?
Basically, nobody knows. It might be 1.3.1, it might be 1.4.0 or even 2.0.0.
Seriously, it is totally up to your release management and branching strategy.
This number is planned version, not released one. Planned.

And all versions, calculated by scd will use that number as a base. So in templates
you may find {{ major }} as 1, {{ minor }} as 2 etc.

	scheme
	string
	semver
	The name of the scheme your are using for versioning.

scd will parse version numbers according to that parameter. So, all these
major, minor etc won’t appear magically, they coming from parsed
version/number parameter. Please check Predefined Template Context to get a
list of parsed context variables.

by default, scd supports PEP 440 [https://www.python.org/dev/peps/pep-0440] and semver [http://semver.org/] schemes. Their codenames are
pep440 and semver accordingly. Also, there are Git-flavored schemes
git_pep440 and git_semver: these flavors more or less the same as their
prefixless variants, but scd will use git to calculate some parameters like
putting git tag in local part of PEP 440 [https://www.python.org/dev/peps/pep-0440] or distance from latest version tag as
prerelase in semver.

User can define his own schemes using entrypoints-based plugin mechanism. Please
check documentation for scd.version for that.

search_patterns

Search patterns defines regular expression which are used to search a
place in file where to replace.

scd works in line-mode fashion, similar to sed, so all
expressions applied to the line. Also, please be noticed that
due to some implementation details, all expression will be
compiled with re.VERBOSE and re.UNICODE.
If you are not from Python world, please check re [https://docs.python.org/3/library/re.html] documentation.

Important

Please check documentation on re.VERBOSE [https://docs.python.org/3/library/re.html#re.VERBOSE]. Seriously, if you do not know what it is, go and read.

This block should have a simple mapping, where key is the name of the
pattern and value is regular expression, understandable by Python.

There are several predefined search templates are available:

	pep440

	semver

	git_pep440

	git_semver

They are matching version in the format, allowed by semver or PEP440. If
you have your own versioning available as plugin, it will be here also.
Since all of them are defined, there is no need to define them on your
own. But if you define pattern with such name in that section, default
one will be, obviously, overriden.

Also, to simplify composition of your own patterns, these names are
available as template context variables in search patterns. In other
words, pattern like v{{ semver }} is perfectly fine.

Important

scd will replace group 0 of the pattern. This is done intentionally
to avoid possible ambiguity. In other word, it replaces whole
pattern, not only some group. If you want to define regular
expression more presicely, please use look-ahead and look-behind
expressions.

replacement_patterns

Replacement patterns are used to express version for the search pattern.

The same thing, this parameter is key/value mapping where key if the
name of the pattern and value is Jinja2 template, used for replacement.
For available context variables please check PEP440 and SemVer [http://semver.org/]

There are 2 predefined replacement patterns:

	Name
	Equialent
	Description

	base
	{{ base }}
	Base version. Literally, the same stuff as you have in
version/number block

	full
	{{ full }}
	Full version, generated by your scheme. The most complete
and precise as possible.

Of course, it is possible to override them in that section.

groups

Sometimes you want to change versions only in some subset of files.
This why you can group them in some optional groups and filter by these
groups. So, let’s say you’ve defined groups code and docs. In that
case, you can modify versions in docs only, without touching the code.

This is a mapping parameter. Key is the group name, value is regular
expression. Each expression sets a path (or pathes) relative to the
position of config file. The same story, as in files.

Important

scd will implicitly append $ to the pattern. Please do not use
^ and $ as start/end of the line - it just makes no sense.

defaults

If you have a lot of files, sometimes you want to have some default
replacement or search. This is because it is possible to postpone some
parameter having default one.

This block has 2 mandatory parameters and 2 optionals.

	Name
	Description

	search
	This is a name of search pattern which should be used by default.

	replace
	This is a name of default replacement pattern should be used by default.

Please be noticed, that values are names, not raw patterns. Keys from
search_patterns and replacement_patterns.

files

Files are the list of file structures which scd should worry about. If
scd does not have a section in config file, it will ignore file even
if it explicitly set in CLI. Well, because nobody knows how to manage
unknown file.

This is a mapping between filenames and a list of search/replacements.

Filename is rather simple: it is POSIX path to the file, relative
to the config. POSIX means that separator is /, not \.
So if you have a filename docs/source/conf.py, it will
work perfectly on Unix/OS X and Windows. On Windows, actually, scd
will interpret this path as docssourceconf.py os it is
crossplatform. Another mentioned thing about filename is that it
is relative to the config file. So with file above and config file
path /home/username/project/.scd.yaml, scd will process
/home/username/project/docs/source/conf.py.

Search/replacements are the list with following rules:

	Parameter
	Description

	search
	The name of the search pattern from search_patterns or some globally defined.

Please check search_patterns for details.

Note: this is mutually exclusive with search_raw. Please define either
search or search_raw.

	search_raw
	The pattern to use. This is actual regular expression which can be used to define
some search pattern ad-hoc, without populating search_patterns section with
patterns which require only once.

Please check search_patterns for details on how to compose such regular expressions.

Note: this is mutually exclusive with search. Please define either search
or search_raw.

	replace
	The name of the replacement pattern from replacement_patterns or some globally
defined.

Please check replacement_patterns for details.

Note: this is mutually exclusive with replace_raw. Please define either
replace either replace_raw

	replace_raw
	The replacement template to use. This is actual Jinja2 template which can be used
to define some ad-hoc replacement without populating replacement_patterns section
with stuff which require only once.

Please check replacement_patterns for details.

Note: this is mutually exclusive with replace. Please define either replace_raw
either replace.

Please be noticed that at least something has to be defined. You may
postpone any parameter (no search or search_raw for example,
but if you define any, please remember about mutual exclusive groups,
mentioned in table), then parameters from defaults section will
be used. But do not keep element empty. There is special placeholder
default for that. So if you want to use defaults only, please use
config like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	version:
 number: 1.0.1
 scheme: semver

defaults:
 search: semver
 replace: base

files:
 setup.py:
 - default

In that case semver search pattern and base replacement will be
used for setup.py.

Predefined Template Context

As it was previously mentioned, there are several predefined context
variables which might be used in templates for search and replacements.
Also, please remember, that these contexts are different: you cannot use
context vars from replacements to make search pattern.

Search Context

	Context Variable
	Description

	pep440
	This searches version number, valid according to PEP 440 [https://www.python.org/dev/peps/pep-0440].

	git_pep440
	Same as pep440.

	semver
	This searches version number, valid according to semver [http://semver.org/].

	git_semver
	Same as semver.

Replacement Context

Replacement context is totally dependend on version scheme provided.
Moreover, every scheme provides its own set of context variables, and
it is possible that you have a scheme which is not version numbered (I
worked with such scheme once, and it was not that bad as one can think).

Of course, there is a number of some predefined context variables for
replacements, you may find them in replacement_patterns section.

For next sections we need to make some assumptions on versions.
Let’s pretend that we have version 1.2.0 in our config
file, using Git flavor of a scheme, operating on commit
ff5cff170e93ab4f7dd87437951c6646e297c538 which is 5 commits left
from latest version tag.

SemVer

	Context Variable
	Type
	Value From Example

	base
	string
	1.2.0

	full
	string
	1.2.0-5+ff5cff1

	major
	integer
	1

	next_major
	integer
	2

	prev_major
	integer
	0

	minor
	integer
	2

	next_minor
	integer
	3

	prev_minor
	integer
	1

	patch
	integer
	0

	next_patch
	integer
	1

	prev_patch
	integer
	0

	prerelase
	string
	5

	next_prerelease
	string
	6

	prev_prerelease
	string
	4

	build
	string
	ff5cff1

	next_build
	string
	ff5cff2

	prev_build
	string
	ff5cff0

As you can see, this is rather trivial. The most interesting parts are
build and prerelase management. By default, scd will try to guess next
and previous parts (it increments latest number found in the string).
Sometimes it make sense (build5 for example), sometimes not (Git
commit hash) so please pay attention to your strategy.

PEP440

To show all possible values, let’s consider base version as 1.2.0rc1.

	Context Variable
	Type
	Value From Example

	base
	string
	1.2.0rc1

	full
	string
	1.2.0rc1.dev5+ff5cff1

	maximum
	string
	0!1.2.0rc1.post0.dev5+ff5cff1

	epoch
	integer
	0

	major
	integer
	1

	next_major
	integer
	2

	prev_major
	integer
	0

	minor
	integer
	2

	next_minor
	integer
	3

	prev_minor
	integer
	1

	patch
	integer
	0

	next_patch
	integer
	1

	prev_patch
	integer
	0

	prerelase
	integer
	1

	prerelase_type
	string
	rc

	next_prerelease
	integer
	2

	prev_prerelease
	integer
	0

	dev
	integer
	5

	next_dev
	integer
	6

	prev_dev
	integer
	4

	post
	integer
	0

	next_post
	integer
	1

	prev_post
	integer
	0

	local
	string
	ff5cff1

So, more or less the same. The only difference is that full won’t
display data which is 0 or empty. maximum does.

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 Usage

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Usage

CLI Arguments and Options

usage: scd [-h] [-V] [-p] [-n] [-c CONFIG_PATH]
 [-x [CONTEXT_VAR [CONTEXT_VAR ...]]] [-d | -v]
 [FILE_PATH [FILE_PATH ...]]

scd is a tool to manage version strings within your project files.

positional arguments:
 FILE_PATH Path to the files where to make version bumping. If
 nothing is set, all filenames in config will be used.

optional arguments:
 -h, --help show this help message and exit
 -V, --own-version print version only.
 -p, --replace-version
 print version to replace to.
 -n, --dry-run make dry run, do not change anything.
 -c CONFIG_PATH, --config CONFIG_PATH
 path to the config. By default autodiscovery will be
 performed.
 -x [CONTEXT_VAR [CONTEXT_VAR ...]], --extra-context [CONTEXT_VAR [CONTEXT_VAR ...]]
 Additional context variables. Format is key=value.
 -s {git_pep440,git_semver,pep440,semver}, --version-scheme {git_pep440,git_semver,pep440,semver}
 override version-scheme from config.
 -d, --debug run in debug mode
 -v, --verbose run tool in verbose mode

I have no idea what to add here. You can get this output with scd -h.

Explicit Scheme

Sometimes you need to override scheme from config file. For example, you
may want to use pep440 for versioning but in CI system (or any build
system) you need to use git_pep440. This option is for you.

Debug and Verbose Mode

By default, scd won’t notify you about anything. And won’t print. But
somethimes you want to know about some details. There are 2 ways how to
do that: using debug and verbose mode.

Verbose output should be used if you are worrying about how scd is
processing your files. Debug output - if you have some issue and want
to yell on developer having something in your hands. If suspect you
absolutely do not need to execute debug mode if you are not author of
the tool.

Here are examples:

Verbose mode:

>>> Use /home/sergey/dev/pvt/scd/.scd.yaml as config file
>>> Parsed config as YAML
>>> Version is 0.1.0.dev24+3177b4e
>>> Start to process /home/sergey/dev/pvt/scd/setup.py
>>> Modify 'version="0.0.1",' to 'version="0.1.0.dev24+3177b4e",'
>>> Start to process /home/sergey/dev/pvt/scd/docs/source/conf.py
>>> Modify "version = '1.0'" to "0.1'"
>>> Modify "release = '1.0.0b1'" to "0.1.0'"
>>> Start to process /home/sergey/dev/pvt/scd/scd/__init__.py
>>> Modify '__version__ = "0.1.0"' to '0.1.0.dev24"'

Debug mode:

149 [DEBUG] (main:69) Options: Namespace(config=None, debug=True, dry_run=True, files=[], verbose=False)
149 [DEBUG] (main:169) Search configfile in /home/sergey/dev/pvt/scd
149 [INFO] (main:177) Use /home/sergey/dev/pvt/scd/.scd.yaml as config file
150 [DEBUG] (config:197) Use default json as JSON config parser.
164 [DEBUG] (config:218) Use PyYAML for YAML config parser.
165 [DEBUG] (config:228) Use toml for TOML config parser.
165 [DEBUG] (config:244) Cannot parse JSON: Expecting value: line 1 column 1 (char 0)
169 [INFO] (config:240) Parsed config as YAML
169 [DEBUG] (config:242) Parsed config content:
{
 "defaults": {
 "replacement": "full",
 "search": "pep440"
 },
 "files": {
 "docs/source/conf.py": [
 {
 "replace_raw": "{{ major }}.{{ minor }}",
 "search_raw": "^version\\s=\\s'{{ pep440 }}'"
 },
 {
 "replace_raw": "{{ major }}.{{ minor }}.{{ patch }}",
 "search_raw": "^release\\s=\\s'{{ pep440 }}'"
 }
],
 "scd/__init__.py": [
 {
 "replace_raw": "{{ major }}.{{ minor }}.{{ patch }}{% if post %}.post{{ post }}{% endif %}{% if dev %}.dev{{ dev }}{% endif %}",
 "search_raw": "^__version__\\s=\\s\"{{ pep440 }}\""
 }
],
 "setup.py": [
 {
 "replace": "full",
 "search": "setuppy"
 }
]
 },
 "search_patterns": {
 "setuppy": "(?<=version=\\\"){{ git_pep440 }}"
 },
 "version": {
 "number": "0.1.0",
 "scheme": "git_pep440"
 }
}
175 [INFO] (main:72) Version is 0.1.0.dev24+3177b4e
176 [DEBUG] (files:204) File /home/sergey/dev/pvt/scd/docs/source/conf.py is ok
176 [DEBUG] (files:204) File /home/sergey/dev/pvt/scd/setup.py is ok
176 [DEBUG] (files:204) File /home/sergey/dev/pvt/scd/scd/__init__.py is ok
176 [INFO] (main:81) Start to process /home/sergey/dev/pvt/scd/docs/source/conf.py
176 [DEBUG] (main:82) File object: <File(filename='docs/source/conf.py', path='/home/sergey/dev/pvt/scd/docs/source/conf.py', patterns=[<SearchReplace(search="^version\\s=\\s'v?\n (?:\n (?:(?P<epoch>[0-9]+)!)? # epoch\n (?P<release>[0-9]+(?:\\.[0-9]+)*) # release segment\n (?P<pre> # pre-release\n [-_\\.]?\n (?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))\n [-_\\.]?\n (?P<pre_n>[0-9]+)?\n)?\n (?P<post> # post release\n (?:-(?P<post_n1>[0-9]+))\n |\n (?:\n [-_\\.]?\n (?P<post_l>post|rev|r)\n [-_\\.]?\n (?P<post_n2>[0-9]+)?\n)\n)?\n (?P<dev> # dev release\n [-_\\.]?\n (?P<dev_l>dev)\n [-_\\.]?\n (?P<dev_n>[0-9]+)?\n)?\n)\n (?:\\+(?P<local>[a-z0-9]+(?:[-_\\.][a-z0-9]+)*))? # local version'", replace=<Template memory:7f92ac61bc50>)>, <SearchReplace(search="^release\\s=\\s'v?\n (?:\n (?:(?P<epoch>[0-9]+)!)? # epoch\n (?P<release>[0-9]+(?:\\.[0-9]+)*) # release segment\n (?P<pre> # pre-release\n [-_\\.]?\n (?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))\n [-_\\.]?\n (?P<pre_n>[0-9]+)?\n)?\n (?P<post> # post release\n (?:-(?P<post_n1>[0-9]+))\n |\n (?:\n [-_\\.]?\n (?P<post_l>post|rev|r)\n [-_\\.]?\n (?P<post_n2>[0-9]+)?\n)\n)?\n (?P<dev> # dev release\n [-_\\.]?\n (?P<dev_l>dev)\n [-_\\.]?\n (?P<dev_n>[0-9]+)?\n)?\n)\n (?:\\+(?P<local>[a-z0-9]+(?:[-_\\.][a-z0-9]+)*))? # local version'", replace=<Template memory:7f92ac61bcf8>)>])>
184 [INFO] (files:61) Modify "version = '1.0'" to "0.1'"
185 [INFO] (files:61) Modify "release = '1.0.0b1'" to "0.1.0'"
186 [DEBUG] (main:149) No need to save /home/sergey/dev/pvt/scd/docs/source/conf.py
186 [INFO] (main:81) Start to process /home/sergey/dev/pvt/scd/setup.py
186 [DEBUG] (main:82) File object: <File(filename='setup.py', path='/home/sergey/dev/pvt/scd/setup.py', patterns=[<SearchReplace(search='(?<=version=\\")v?\n (?:\n (?:(?P<epoch>[0-9]+)!)? # epoch\n (?P<release>[0-9]+(?:\\.[0-9]+)*) # release segment\n (?P<pre> # pre-release\n [-_\\.]?\n (?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))\n [-_\\.]?\n (?P<pre_n>[0-9]+)?\n)?\n (?P<post> # post release\n (?:-(?P<post_n1>[0-9]+))\n |\n (?:\n [-_\\.]?\n (?P<post_l>post|rev|r)\n [-_\\.]?\n (?P<post_n2>[0-9]+)?\n)\n)?\n (?P<dev> # dev release\n [-_\\.]?\n (?P<dev_l>dev)\n [-_\\.]?\n (?P<dev_n>[0-9]+)?\n)?\n)\n (?:\\+(?P<local>[a-z0-9]+(?:[-_\\.][a-z0-9]+)*))? # local version', replace=<Template memory:7f92ac60d9b0>)>])>
193 [INFO] (files:61) Modify 'version="0.0.1",' to 'version="0.1.0.dev24+3177b4e",'
193 [DEBUG] (main:149) No need to save /home/sergey/dev/pvt/scd/setup.py
193 [INFO] (main:81) Start to process /home/sergey/dev/pvt/scd/scd/__init__.py
193 [DEBUG] (main:82) File object: <File(filename='scd/__init__.py', path='/home/sergey/dev/pvt/scd/scd/__init__.py', patterns=[<SearchReplace(search='^__version__\\s=\\s"v?\n (?:\n (?:(?P<epoch>[0-9]+)!)? # epoch\n (?P<release>[0-9]+(?:\\.[0-9]+)*) # release segment\n (?P<pre> # pre-release\n [-_\\.]?\n (?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))\n [-_\\.]?\n (?P<pre_n>[0-9]+)?\n)?\n (?P<post> # post release\n (?:-(?P<post_n1>[0-9]+))\n |\n (?:\n [-_\\.]?\n (?P<post_l>post|rev|r)\n [-_\\.]?\n (?P<post_n2>[0-9]+)?\n)\n)?\n (?P<dev> # dev release\n [-_\\.]?\n (?P<dev_l>dev)\n [-_\\.]?\n (?P<dev_n>[0-9]+)?\n)?\n)\n (?:\\+(?P<local>[a-z0-9]+(?:[-_\\.][a-z0-9]+)*))? # local version"', replace=<Template memory:7f92ac61ff98>)>])>
198 [INFO] (files:61) Modify '__version__ = "0.1.0"' to '0.1.0.dev24"'
198 [DEBUG] (main:149) No need to save /home/sergey/dev/pvt/scd/scd/__init__.py

Dry Run

Sometimes you do not want to do replacement, but to check what it will
change. Execute scd with --dry-run flag. Also, I advise to run in
verbose mode to get details you want.

Config Autodiscovery

It is always possible to set path to your config with --config. It
is fine but sometimes you do not want to remember where is your config
is placed. And you are working within Git repository. And all folks are
placing such files in the root of repositories so... this is idea of
autodiscovery.

Let’s assume that you are working in ./ui directory of
your repository and execuing scd without explicit config path
(--config ../.scd.yaml). What will happen:

	scd will try to search within your current directory. It will search
configs in following order:
	.scd.json

	scd.json

	.scd.yaml

	scd.yaml

	.scd.toml

	scd.toml

	If nothing is found, scd will get top level of your repository (git
rev-parse --show-toplevel) and start to search there. The same file
order.

Extra Context

Sometimes you need to have some extra context to propagate
into templates or patterns. Here is the flag for that, -x
(--extra-context). If you execute scd like scd -x name=myname,
you will get name variable for replacement and search patterns
immediately.

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 API Reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

API Reference

scd.

This is yet another implementation of the tools called bumpversions.
There are many such tools available in the wild and I thoroughly
looked through them. And decided to reinvent the wheel. You have a
legit question: WHY THE BLOODY HELL DOES THIS WORLD NEED YET ANOTHER
BUMPVERSION? Because I wanted the tool which works better at slightly
bigger scale and I wanted the tool which I won’t fight against
immediately after adoption.

All bumpversion-like tools alllow you to manage versions of your
software within a project. If you have a version number in your config
file, documentation title, somewhere in the code, you know that it is
irritating to update them manually to the new version. So there is whole
set of tools which can manage them with one command.

For example, there is well-known and probably standard de-facto
bumpversion [https://github.com/peritus/bumpversion]. Unfortunately,
bumpversion seems stale and seriously limited in its capabilities
(this is the main reason why scd was born). For example, there are no
regular expressions and replacement patterns look cumbersome (why do
we need that serialize block if we can use templates? Templates
are everywhere!). Also, I wanted to have a possibility to use several
replacement blocks without dancing around INI syntax which never works
on practice (probably I tend to complicate things, but with bigger
project INI starts to irritate a lot).

scd is extensible with setuptools’ entrypoints [http://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points].
It basically means that if you want, you can always create you own
implementation of some functions, scd will discover that and can use.

Currently, there is only one entrypoint is defined, scd.version.
All instances of that entrypoint should be subclasses
of scd.version.Version class. Please check
scd.version.SemVer or scd.version.PEP440 for
examples.

Contents

	scd.main

	scd.config

	scd.files

	scd.utils

	scd.version

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 scd.main

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	API Reference

scd.main

Module, which has routines for scd CLI.

	
scd.main.catch_exceptions(func)

	Decorator which makes function more CLI friendly.

If everything is ok, it returns os.EX_OK (code 0), if not
- os.EX_SOFTWARE (code 70). Also, it is smart enough to
differ verbose and debug mode and print accordingly.

	
scd.main.configure_logging()

	Configure logging based on OPTIONS.

	
scd.main.get_options()

	Return parsed commandline arguments.

	Returns:	Parsed commandline arguments

	Return type:	argparse.Namespace

	
scd.main.guess_configfile()

	Return file-like object, guessing where the hell if config file.

	Returns:	Open config.

	Return type:	file-like object

	Raises:	ValueError – if cannot find config file.

	
scd.main.main()

	Main function.

Basically, it parses CLI, creates config, traverse files and does
modifications. All that scd does is happening with this function.

	
scd.main.process_file(fileobj, config)

	Function, which is responsible for processing of file.

	Parameters:	
	fileobj (scd.files.File) – File to process.

	config (scd.config.Config) – Parsed configuration.

	
scd.main.search_config_in_directory(directory)

	Return config file name if it is found in directory.

	Parameters:	directory (str) – Path to the directory where to search config files.

	Returns:	Path to the config file (absolute) or None if nothing is
found

	Return type:	str or None

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 scd.config

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	API Reference

scd.config

This module contains all routines, related to scd’s configuration.

	
class scd.config.Config(configpath, version_scheme, config, extra_context)

	Wrapper over parsed configuration data.

This wrapper provides methods for internal scd’s implementation.

You want to use this class to access configuration data.

	Parameters:	
	configpath (str) – Path to the configuration file (can be
relative).

	or None version_scheme (str) – Explicit version scheme to use.

	config (dict) – Parsed configuration.

	str] extra_context (dict[str,) – Additional context to use
in templates.

	Raises:	ValueError – if configuration is not valid to schema.

	
project_directory

	Absolute path to the directory with config file.

	Returns:	Absolute path to the directory.

	Return type:	str

	
static validate_schema(config)

	Validate parsed content to comply with JSON Schema.

	Parameters:	config (dict) – Parsed configuration.

	Returns:	A list of errors, found during verification. If list is
empty, everyting is valid.

	Return type:	list[str]

	
class scd.config.Parser(name, func)

	
	
func

	Alias for field number 1

	
name

	Alias for field number 0

	
class scd.config.V1Config(configpath, version_scheme, config, extra_context)

	Implementation of Config for config version 1.

	
defaults

	A mapping of default search/replace patterns from config file.

	Returns:	Raw mapping, as is.

	Return type:	dict[str, str]

	
files

	A list of files defines in config file.

	Returns:	List of file instances

	Return type:	list[scd.files.File]

	
filter_files(required_groups, required_files)

	Filter and return only those files which are required.

This uses groups and required_files parameter filtering.

	Parameters:	
	required_groups (list[str]) – A list of mandatory groups

	required_files (list[str]) – A list of mandatory files

	Returns:	A list of files after filtering.

	Return type:	list[scd.files.File]

	
groups

	A list of groups defined in config file.

	Returns:	List of group names

	Return type:	list[str, str]

	
replacement_patterns

	A mapping of replacement patterns (name/repl) from config file.

	Returns:	Raw mapping, as is.

	Return type:	dict[str, str]

	
search_patterns

	A mapping of search patterns (name/pattern) from config file.

	Returns:	Raw mapping, as is.

	Return type:	dict[str, str]

	
version

	Instance of scd.version.Version.

This instance is created based on data from config file.

	Returns:	Version

	Return type:	scd.version.Version

	
version_number

	Base version number from config file.

	Returns:	Literal number from config

	Return type:	str

	
version_scheme

	Scheme of the versioning from config file.

For example, it can be git_pep440.

	Returns:	Version scheme

	Return type:	str

	
scd.config.get_json_parser()

	Function which detects what parser should be used for parsing JSONs.

It uses following logic: if simplejson [https://simplejson.readthedocs.io/en/latest/] is available, it
would be used, otherwise default json will work.

	Returns:	JSON parser

	Return type:	Parser

	
scd.config.get_parsers()

	Function to detect locally available parsers.

	Returns:	A list of available parsers for config files.

	Return type:	list[Parser]

	
scd.config.get_toml_parser()

	Function which detects what parser should be used for parsing TOMLs.

It uses following logic: if toml [https://github.com/uiri/toml] is
available, it would be used, otherwise None is returned.

	Returns:	TOML parser or None if nothing found.

	Return type:	Parser or None

	
scd.config.get_yaml_parser()

	Function which detects what parser should be used for parsing YAMLs.

It uses following logic: if PyYAML [http://pyyaml.org/] is
available, it would be used, otherwise it will try for ruamel.yaml [https://bitbucket.org/ruamel/yaml].

	Returns:	YAML parser or None if nothing found.

	Return type:	Parser or None

	
scd.config.make_config(filename, version_scheme, content, extra_context)

	Function to generate config based on incoming parameters.

This function does validation of config version.

	Parameters:	
	filename (str) – Path to the configuration file (can be
relative).

	or None version_scheme (str) – Explicit version scheme to use.

	content (dict) – Parsed configuration.

	str] extra_context (dict[str,) – Additional context to use
in templates.

	Raises:	ValueError – if config version is not supported.

	
scd.config.parse(fileobj, version_scheme, extra_context)

	Function which parses given file-like object with config data.

	Parameters:	
	fileobj (file-like object) – Open file object for parsing.

	or None version_scheme (str) – Explicit version scheme to use.

	str] extra_context (dict[str,) – Additional context to use
in templates.

	Returns:	Parsed config

	Return type:	Config

	Raises:	ValueError – if not possible to parse config in any way.

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 scd.files

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	API Reference

scd.files

All classes and routines related to files.

	
class scd.files.File(name, data, config)

	This is a wrapper for a file on FS which should be managed by scd.

The same story as for scd.config.Config: this wrapper is
used for purposes of conveience mostly. Also, it is required when
one need to emit a list of SearchReplace instances for a
file.

	Parameters:	
	name (str) – The name of the file from config (as is, not absolute
one)

	config (scd.config.Config) – Instance of used config.

	data (list) – A contents of search/replacement parts of the
config.

	
all_replacements

	Mapping of all known replacements for a file.

This mapping includes default replacements and those, defined
in config file.

Key is the name of the replacement, value is an instance of
jinja2.Template.

	Returns:	Mapping of replacements.

	Return type:	dict[str, str]

	
all_search_patterns

	Mapping of all search patterns for a file.

This mapping includes default patterns and those, defined
in config file.

Key is the name of the replacement, value is compiled regular
expression.

	Returns:	Mapping of patterns.

	Return type:	dict[str, str]

	
default_replace_pattern

	Property, returns default replacement template from config.

	Returns:	Default replacement pattern

	Return type:	jinja2.Template

	
default_replacements

	Mapping of default replacements for a file.

Key is the name of the replacement, value is an instance of
jinja2.Template.

	Returns:	Mapping of replacements.

	Return type:	dict[str, str]

	
default_search_pattern

	Property, returns default search pattern from config.

	Returns:	Default search pattern

	Return type:	Regular expression

	
default_search_patterns

	Mapping of default search patterns for a file.

Key is the name of the replacement, value is compiled regular
expression.

	Returns:	Mapping of patterns.

	Return type:	dict[str, str]

	
filename

	Relative filename of the file.

The most cool part about this property is that such
name is platform independent: on Windows it might be
docsconf.py, on Linux: docs/conf.py. That cool.

	Returns:	Native platform filename

	Return type:	str

	
path

	Absolute path to the file for current platform.

	Returns:	Native platform absolute path.

	Return type:	str

	
patterns

	A list of search/replacements for a file, based on config.

	Returns:	List of instances for file management.

	Return type:	list[SearchReplace]

	
class scd.files.SearchReplace(search, replace)

	Class, which presents a pair of single search and replacement.

	Parameters:	
	search (regexp) – Search regular expression.

	replace (jinja2.Template) – Replacement template

	
static get_replacement(replace, version)

	Return rendered template, taken context from version.

	Parameters:	
	replace (jinja2.Template) – Template for replacement.

	version (scd.version.Version) – Version instance, where template takes context.

	Returns:	Rendered template, ready to insert.

	Raises:	ValueError – if there is no enough context to render template.

	Return type:	str

	
process(version, text)

	Process text according to given version.

This does what is expected: search in text (as a rule, line from
file) and inserts replacement where required.

	Parameters:	
	version (scd.version.Version) – Version instance to use.

	text (str) – Text to process.

	Returns:	Processed line, after inserting replacement if needed.
Return original line otherwise.

	Return type:	str

	
scd.files.make_pattern(base_pattern, config)

	Function, which creates regular expression based on given pattern.

Also, it injects all predefined search regexps like pep440 etc.

	Parameters:	base_pattern (str) – Pattern to transform to regular expression
instance.

	Returns:	Regular expression pattern

	Return type:	regexp

	Raises:	ValueError – if pattern cannot be parsed.

	
scd.files.make_template(template)

	Function for creating template instance from text template.

	Parameters:	template (str) – Text template to process.

	Returns:	Correct template instance, based on given text.

	Return type:	jinja2.Template

	
scd.files.validate_access(files)

	Function, which validates access to the files.

	Parameters:	files (list[scd.files.File]) – A list of files to check

	Returns:	Is all files are accessible or not

	Return type:	bool

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 scd.utils

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	API Reference

scd.utils

A set of various utils, used within scd.

	
scd.utils.execute(command)

	Executor of external command and wrapper for result.

This is a wrapper for subprocess.Popen with stdin set to
/dev/null.

It returns result like:

{
 "code": 0,
 "stdout": ["this is a line of stdout", "and this is another"],
 "stderr": []
}

	Parameters:	command (list[str]) – A command for subprocess.Popen to
execute.

	Returns:	Execution result.

	Return type:	dict

	Raises:	ValueError – if command is not possible to execute.

	
scd.utils.get_plugins(namespace)

	A mapping of plugins (loaded) in given namespace.

	Parameters:	namespace (str) – The name of namespace to use.

	Returns:	Mapping for plugins (key is the name and value is loaded plugin).

	Return type:	dict

	
scd.utils.get_version_plugins()

	A mapping of scd version plugins.

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 scd.version

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Home

 	API Reference

scd.version

Routines for version management.

These module has Version class which is a base class for
entrypoints scd.version. All entrypoints of such class should be
subclasses of Version.

Currently, it scd.version has following defined entrypoints:

	Entrypoint
	Class

	pep440
	PEP440

	semver
	SemVer

	git_pep440
	GitPEP440

	git_semver
	GitSemVer

	
class scd.version.GitMixin(*args, **kwargs)

	Mixin to add Git flavor for Version classes.

	
class scd.version.GitPEP440(config)

	Git flavored PEP440 implementation.

This implementation does the same, but precalculates local and dev
parts based on Git information.

Dev release is the number of commits since latest tag and local will
have Git short commit SHA at the first place.

	
class scd.version.GitSemVer(config)

	Git flavored SemVer implementation.

This implementation does the same, but precalculates build and
prerelase parts based on Git information.

Prerelase is the number of commits since latest tag and build is
short commit hash. Previous and next builds are always empty.
Because nobody predicts next commit hash.

	
class scd.version.PEP440(config)

	Implementation of Python versioning.

For details, please check PEP 440 [https://www.python.org/dev/peps/pep-0440].

	
dev

	Dev number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 2.

	Returns:	Development part of the version number

	Return type:	int

	
epoch

	Epoch part of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 1483072998.

	Returns:	Epoch part of the version number

	Return type:	int

	
local

	Local part of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 5afe90c.linux.

	Returns:	Local part of the version number

	Return type:	int

	
major

	Major part of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 1.

	Returns:	Major part of the version number

	Return type:	int

	
maximum

	Maximal representation of the version.

This always has all possible parts (probably except of
prerelase, it is still optional, because we have to know
context to calculate that) even if it makes no sense. I have no
idea about usecase of that except of having this property for
completenes.

Example: 0!1.2.3rc3.post0.dev0+1ubuntu1.

Horrible.

	Returns:	Maximal version number.

	Return type:	str

	
minor

	Minor number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 2.

	Returns:	Minor part of the version number

	Return type:	int

	
next_dev

	Next dev number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 3.

	Returns:	Next development part of the version number

	Return type:	int

	
next_major

	Next major number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 2.

	Returns:	Next major part of the version number

	Return type:	int

	
next_minor

	Next minor number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 3.

	Returns:	Next minor part of the version number

	Return type:	int

	
next_patch

	Next patch number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 4.

	Returns:	Next patch part of the version number

	Return type:	int

	
next_post

	Next post number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 14.

	Returns:	Next post part of the version number

	Return type:	int

	
next_prerelease

	Next prerelease number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 4.

	Returns:	Next prerelease part of the version number

	Return type:	int

	
patch

	Patch number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 3.

	Returns:	Patch part of the version number

	Return type:	int

	
post

	Post number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 13.

	Returns:	Post part of the version number

	Return type:	int

	
prerelease

	Prerelease number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 3.

	Returns:	Prerelease part of the version number

	Return type:	int

	
prerelease_type

	Type of the prerelase.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns rc.

	Returns:	Type of the prerelease

	Return type:	str

	
prev_dev

	Prev dev number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 2.

	Returns:	Previous development part of the version number

	Return type:	int

	
prev_major

	Prev major number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 0.

	Returns:	Previous major part of the version number

	Return type:	int

	
prev_minor

	Prev minor number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 1.

	Returns:	Previous minor part of the version number

	Return type:	int

	
prev_patch

	Prev patch number for the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 2.

	Returns:	Previous patch part of the version number

	Return type:	int

	
prev_post

	Prev post number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 12.

	Returns:	Previous post part of the version number

	Return type:	int

	
prev_prerelease

	Prev prerelease number of the version.

For version 1483072998!1.2.3rc3.post13.dev2+5afe90c.linux it
returns 2.

	Returns:	Previous prerelease part of the version number

	Return type:	int

	
class scd.version.SemVer(config)

	Implementation of semantic version numbering.

For details, please check http://semver.org/.

	
build

	Build version number.

Build version number of version 1.2.3-pre1+build4 is build4.

	Returns:	Build version number.

	Return type:	str

	
next_build

	Next build version number.

Next build version number of version 1.2.3-pre1+build4 is
build5.

	Returns:	Next build version number.

	Return type:	str

	
next_major

	Next major version number.

Next major number of version 1.2.3 is 2.

	Returns:	Next major version number.

	Return type:	int

	
next_minor

	Next minor version number.

Next minor number of version 1.2.3 is 3.

	Returns:	Next minor version number.

	Return type:	int

	
next_patch

	Next patch version number.

Next patch number of version 1.2.3 is 4.

	Returns:	Next patch version number.

	Return type:	int

	
next_prerelease

	Next prerelase version number.

Next prerelase version number of version 1.2.3-pre1+build4
is pre2.

	Returns:	Next prerelase version number.

	Return type:	str

	
classmethod next_text_version(text)

	Method which returns next number from the string.

From string build10s it returns 11.

	Parameters:	text (str) – Line to search in.

	Returns:	Next number

	Return type:	int

	
classmethod parse_text_version(text)

	Method which extracts latest number from the string.

Empty string implies 0. No number also implies 0.

	Parameters:	text (str) – Line to search in.

	Returns:	Latest number

	Return type:	int

	
prerelease

	Prerelase version number.

Prerelase version number of version 1.2.3-pre1+build4 is pre1.

	Returns:	Prerelase version number.

	Return type:	str

	
prev_build

	Prev build version number.

Previous build version number of version 1.2.3-pre1+build4
is build3.

	Returns:	Previous build version number.

	Return type:	str

	
prev_major

	Prev major version number.

Previous major number of version 1.2.3 is 0.

	Returns:	Previous major version number.

	Return type:	int

	
prev_minor

	Prev minor version number.

Previous minor number of version 1.2.3 is 1.

	Returns:	Previous minor version number.

	Return type:	int

	
prev_patch

	Prev patch version number.

Previous patch number of version 1.2.3 is 4.

	Returns:	Previous patch version number.

	Return type:	int

	
prev_prerelease

	Prev prerelase version number.

Previous prerelase version number of version
1.2.3-pre1+build4 is pre0.

	Returns:	Previous prerelase version number.

	Return type:	str

	
classmethod prev_text_version(version)

	Method which returns previous number from the string.

From string build10s it returns 9.

	Parameters:	text (str) – Line to search in.

	Returns:	Next number

	Return type:	int

	
class scd.version.Version(config)

	Base class for version scheme.

This class is the base of scd.version entrypoint and it’s
main intention is correct version parsing and creating of
template context.

	Parameters:	config (scd.config.Config) – Configuration wrapper

	
base

	Base number from config. Literally, as defined there.

	Returns:	Version number

	Return type:	str

	
context

	Context for jinja2.Template.

	Returns:	A mapping of context variables.

	Return type:	dict[str, str or int]

	
full

	Full reference version number, with a lot of details.

	Returns:	Version number

	Return type:	str

	
scd.version.git_distance(git_dir, matcher='v*')

	Return a number of commits since latest matched tag.

	Parameters:	
	git_dir (str) – Path to the .git directory of
repository.

	matcher (str) – Glob of the tag names to operate with.

	Returns:	The number of commits or None if nothing is found.

	Return type:	int or None

	
scd.version.git_tag(git_dir)

	Return a current Git commit sha for repository.

	Parameters:	git_dir (str) – Path to the .git directory of
repository.

	Returns:	Commit SHA in short form or None if cannot find any.

	Return type:	str or None

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Home

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 scd	

 	
 	
 scd.config	

 	
 	
 scd.files	

 	
 	
 scd.main	

 	
 	
 scd.utils	

 	
 	
 scd.version	

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	Home

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | V

A

 	

 	all_replacements (scd.files.File attribute)

 	

 	all_search_patterns (scd.files.File attribute)

B

 	

 	base (scd.version.Version attribute)

 	

 	build (scd.version.SemVer attribute)

C

 	

 	catch_exceptions() (in module scd.main)

 	Config (class in scd.config)

 	

 	configure_logging() (in module scd.main)

 	context (scd.version.Version attribute)

D

 	

 	default_replace_pattern (scd.files.File attribute)

 	default_replacements (scd.files.File attribute)

 	default_search_pattern (scd.files.File attribute)

 	

 	default_search_patterns (scd.files.File attribute)

 	defaults (scd.config.V1Config attribute)

 	dev (scd.version.PEP440 attribute)

E

 	

 	epoch (scd.version.PEP440 attribute)

 	

 	execute() (in module scd.utils)

F

 	

 	File (class in scd.files)

 	filename (scd.files.File attribute)

 	files (scd.config.V1Config attribute)

 	

 	filter_files() (scd.config.V1Config method)

 	full (scd.version.Version attribute)

 	func (scd.config.Parser attribute)

G

 	

 	get_json_parser() (in module scd.config)

 	get_options() (in module scd.main)

 	get_parsers() (in module scd.config)

 	get_plugins() (in module scd.utils)

 	get_replacement() (scd.files.SearchReplace static method)

 	get_toml_parser() (in module scd.config)

 	get_version_plugins() (in module scd.utils)

 	get_yaml_parser() (in module scd.config)

 	

 	git_distance() (in module scd.version)

 	git_tag() (in module scd.version)

 	GitMixin (class in scd.version)

 	GitPEP440 (class in scd.version)

 	GitSemVer (class in scd.version)

 	groups (scd.config.V1Config attribute)

 	guess_configfile() (in module scd.main)

L

 	

 	local (scd.version.PEP440 attribute)

M

 	

 	main() (in module scd.main)

 	major (scd.version.PEP440 attribute)

 	make_config() (in module scd.config)

 	make_pattern() (in module scd.files)

 	

 	make_template() (in module scd.files)

 	maximum (scd.version.PEP440 attribute)

 	minor (scd.version.PEP440 attribute)

N

 	

 	name (scd.config.Parser attribute)

 	next_build (scd.version.SemVer attribute)

 	next_dev (scd.version.PEP440 attribute)

 	next_major (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	next_minor (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	

 	next_patch (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	next_post (scd.version.PEP440 attribute)

 	next_prerelease (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	next_text_version() (scd.version.SemVer class method)

P

 	

 	parse() (in module scd.config)

 	parse_text_version() (scd.version.SemVer class method)

 	Parser (class in scd.config)

 	patch (scd.version.PEP440 attribute)

 	path (scd.files.File attribute)

 	patterns (scd.files.File attribute)

 	PEP440 (class in scd.version)

 	post (scd.version.PEP440 attribute)

 	prerelease (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	prerelease_type (scd.version.PEP440 attribute)

 	prev_build (scd.version.SemVer attribute)

 	

 	prev_dev (scd.version.PEP440 attribute)

 	prev_major (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	prev_minor (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	prev_patch (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	prev_post (scd.version.PEP440 attribute)

 	prev_prerelease (scd.version.PEP440 attribute)

 	

 	(scd.version.SemVer attribute)

 	prev_text_version() (scd.version.SemVer class method)

 	process() (scd.files.SearchReplace method)

 	process_file() (in module scd.main)

 	project_directory (scd.config.Config attribute)

 	
 Python Enhancement Proposals

 	

 	PEP 440, [1], [2], [3], [4]

R

 	

 	replacement_patterns (scd.config.V1Config attribute)

S

 	

 	scd (module)

 	scd.config (module)

 	scd.files (module)

 	scd.main (module)

 	scd.utils (module)

 	

 	scd.version (module)

 	search_config_in_directory() (in module scd.main)

 	search_patterns (scd.config.V1Config attribute)

 	SearchReplace (class in scd.files)

 	SemVer (class in scd.version)

V

 	

 	V1Config (class in scd.config)

 	validate_access() (in module scd.files)

 	validate_schema() (scd.config.Config static method)

 	Version (class in scd.version)

 	

 	version (scd.config.V1Config attribute)

 	version_number (scd.config.V1Config attribute)

 	version_scheme (scd.config.V1Config attribute)

 Copyright 2016, Sergey Arkhipov.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Home »

